Horn Speaker 제작기

by KYJ posted Sep 11, 2021
?

단축키

Prev이전 문서

Next다음 문서

ESC닫기

크게 작게 위로 아래로 댓글로 가기 인쇄

image_resized (3).jpg

 

나는 Horn스피커를 그리 좋아하지 않았었다.  아마도 소시적의 경험에서 온 선입감 때문일 게다.  대학시절 어느 음악감상실에 Horn 스피커가 있었는데 저음이 마치 동굴에서 나오는 소리처럼 들려서 혼Horn 스피커는 모두 이런 특유의 음색을 낼 것이란 선입감이 그 때부터 생겼던 모양이다.  그래서 그 동안은 Horn 스피커에 대해서는 별 관심이 없었다.

요사이 나에게 옛날 스피커에서 떼어낸 트위터와 미드레인지 스피커 유닛 한 쌍이 생겼는데 자사의 제품에 모두 Horn을 장착한 독일의 AvantGrade Acoustic이란 회사의 스피커들이 생각이 나서 이들 고물 유닛에Horn을 붙여보면 어떨까하는 호기심이 생겼다.

그래서 인터넷을 뒤져 약간의 리써취를 해 보았는데 의외로 Horn스피커에 대한 문헌들을 접하기기 쉽지 않다는 것을 느꼈다.  실상 스피커에 대한 기술은 과거 30여년간 혹은 그 이상으로별로 바뀐게 없고 특히 Horn 스피커에 대한 관심은 오디오 발전과정 초기에에 비해 크게 쇠퇴했다고 보여진다.  그간 스피커의 발전이라면 아마도 콘의 재료분야에 집중되어 있지 않았나 하는게 필자의 생각이다.

그나마 1974년도 3월, 5월,  6월  3회에 걸쳐wireless world잡지에 실렸던 Mr. Dinsdale의 아티클을 접하게 된 것은 참 다행이다.    그 후 1981년 2호,  1986년 2호, 1990년 2호, 1993년 6호의 ‘Speaker Builder”라는 잡지에 실렸던 Bruce Edgar박사의 Horn Speaker 제작 기사를 발견하였다.  Mr. Dinsdale은 그의 아티클에서Horn 스피커가 현실감, 임장감이 뛰어나고 디테일이 잘 살아난다는 주장을 펴서 더욱 나의 호기심을 발동시켰다.  반면 Edgar 박사의 제작기사들은 상당한 실제적 정보를 제공해 준다.  Edgar 박사는 꺼져가는 Horn 스피커에 대한 관심을 잠시나마 다시 불러일으킨 장본인이라 할 수 있겠는데 당시, 즉 80년대와 90년대 이후의 SET(Single Ended Triode)암프의 유행에 따른 필요에 부응했다는 측면이 있다고 보인다. 대부분 저출력의 SET암프에게는 고효율의Horn 스피커가 적격일 것이다.

여기서는 Dinsdale과 Edgar 박사의 아티클들을 참고하여 나의 수중에 들어온 고물 스피커 유닛에 장착할 Horn 설계와 제작과정을 기술해 보려 한다.

 

Horn 스피커의 동작원리

Horn은 일종의 임피던스 매칭 트랜스로 작동한다.  

가령 진공관 암프의 출력관에서 나오는 오디오 신호 출력은 전압이 높고 전류는 작다.  즉 임피던스가 높다. 반면 암프의 부하로 작동하는 스피커는 낮은 전압에 높은 전류가 요구된다.  즉 임피던스가 낮다. 진공관 암프에서 출력트랜스는 바로 높은 임피던스의 암프출력을 낮은 임피던스의 스피커에 매칭하는 역할을 한다. 

Horn도 Horn의 목구멍의 높은 압력과 낮은 속도의 음향에너지를 Horn아가리의 낮은 압력과 높은 속도의 음향 에너지로 변환해 준다.  즉 임피던스 매칭 트랜스의 역할을 하는 것이다.

따라서 Horn스피커가 제대로 작동하려면 진공관 암프에서 출력트랜스가 하는 역할을 제대로 해야한다.  진공관 암프에서 출력트랜스의 1차측은 출력관의 출력임피던스와 매칭이 되어야 하고 2차측은 부하인 스피커의 임피던스와 매칭이 되어야 암프가 제대로 작동한다.  마찬가지로 Horn도 Horn의 입력측, 즉 목구멍이 신호 소스인 스피커와 잘 맞아야 하고 Horn의 출력측, 즉 아가리는 Horn의 부하로 작동할 시청실 (흔히 주택의 거실)의 음향적 요구조건과 잘 맞아야 한다.  진공관 암프의 출력트랜스와 마찬가지로 Horn도 요구되는 출력 레벨과 주파수 특성이 달성되도록 설계해야 한다.

Horn의 두드러진 장점은 고능률이다.  흔히  AR스피커 같은밀폐형 스피커의 능률이 1% 미만이고 스피커 통에 구멍이 있는 위상반전형 스피커의 능률이 대략 2~3%인데 반해Horn 스피커의 능률은 (저역에서) 30-50%라 한다. (고역에서는 이보다 능률이 떨어지는 모양인데 그래도 10% 수준이라니 상당히 좋은 능률이다.  여기서 능률은 전기적 출력과 음향적 출력의 비이다)   이러니 Horn 스피커라면 대략 8W 출력의 300B 싱글 암프만으로 큰 방을 모두 채울수 있는 음량을 만들어 낼 수 있는 것이다. (사실 음향 출력은 우리의 상상 밖이라고 한다.  가령 실내에서 상당한 음량으로 음악을 들을 때도 그 음향출력을 계산해 보면 대략 50mW 정도란다.  제트기의 엔진 소음이 1W 정도라니 정말 상상하기 힘든 숫자이다.  그러니 우리는1KW출력의 암프로 고작  50mW의 음향출력을 듣고 있는 셈이다)

이런 고 능률 때문에 같은 음량일 경우 스피커 떨판에 요구되는 진폭이 매우 작아지게 된다.  떨판의 진폭이 작으면 그만큼 발생할 수 있는 찌그러짐이 작게된다.  물론 Horn이 잘 만들어 지지 않았다면 Horn 특유의 찌그러짐을 첨가하게 될 수 있다.

Horn설계 이론

Horn은4개의  파라메터로 규정된다: 즉 목구멍 크기, 아가리 크기, Horn전체의 길이, 그리고 나팔이 벌어지는 모양.  이 중 3개의 파라메터가 주어지면 나머지 하나의 파라메터는 3개의 주어진 파라메터에 의해 결정된다. 

목구멍과 아가리 크기는 그 단면적으로 주어지고 나팔 모양은 Conical, Exponential,  그리고 Tractrix가 흔히 사용한다.  각기 장단점이 있는데 나는 Tractrix를 선택하였다. 

가장 흔히 쓰이는Exponential Horn의 경우 Horn의 목구멍으로부터 음파가 퍼져나갈 때 아가리에서 발생하는 음파의  반사 현상 때문에 내가 싫어했던Horn 특유의 음색이 생기는 모양이다.  Tractrix의 경우에는 이 문제가 많이 완화되어Horn특유의 음색이  별로 없다.  Tractrix의 경우 전체 길이의 처음 반 정도는그 나팔 모양이 벌어지는 정도가Expontial과 거의 같다.  그러나 그 이후 나팔모양이Expontial에 비해 급격히 확장된다.  이 때문에 Horn의 길이가 비교적 짧아진다. 

Horn주파수 특성을 결정하는 요인들

Horn을 통과하는  최저 주파수 한계는 대략 Horn의 아가리 크기와 Flare Constant 에 의해 상당한 정확도를 가지고 예측이 가능하다. (여기서  Flare Constant 는 Horn의 나팔 모양이 벌어지는 비율을 규정해 주는 상수다.)

그러나 최고 주파수 한계는 여러가지 이유로 그 예측이 매우 어렵다:  (a)  드라이버 떨판과 Horn 목구멍의 여러 부분 사이의 신호 통로 거리가 일정하지 않다.  (b)Horn 내부의 교차 굴절과 반사 (특히 Horn이 접혀있을 경우), (c) 드라이버 자체의 고역특성, 그리고 (d) 드라이버 떨판과 Horn 목구멍간의 공간이Low pass filter의 특성을 가진다는 점.

DIY라는 제약으로 섬세한 측정이 불가능한 상황에서는 대략 주먹구구식으로 설계에 임할 수 밖에는 없다.  이런 점을 염두에 두면 우선 Horn을 통과하는 최저주파수는 대략 아가리의 크기로 결정된다고 해도 좋다.   Horn을 통상적인 거실에서 벽에 가깝게 설치하여 사용하는 경우 최저 주파수는 그 파장이 대략 Horn아가리의 둘레와 같게 하면 큰 무리가 없다.  즉, Horn 단면을 원형으로 가정하였을 때, Horn아가리의 반경을 Rm이라고 하고 최저 카트오프 주파수를 Fcl, 음파의 전파속도를 C 라고하면 최저 주파수 파장의 길이는 C/Fcl가 될 것 이며 따라서 2 * Pi * Rm = C/Fcl 가 된다.  여기서 Pi는 원주율이다.  즉 Rm = C / (2 * Pi * Fcl) 로 주어진다.

앞서 언급한 대로 최고 주파수는 가늠하기가 어렵다.    떨판과 Horn 목구멍 사이의 캐비티 (빈 공간)는 마치 샨트 커패시터의 작용을 하여 목구멍에 의한  공기저항과 더불어 로우패스 필터의 역할을 한다. 따라서 일단 위에서 언급한 (a), (b)와 (c)를 접어둔다고 하더라도 (d)에 의하여 발생될  상향 카트오프 주파수를 계산하기 위하여는 캐비티의 부피를 정확히 계산해야 한다.  한편 Horn에서 발생하는 고조파 찌그러짐은 대략 드라이버와 Horn 목구멍의 미스매칭에서 발생한다.

여러 이유로 DIY가 Horn목구멍과 드라이버의 매칭과 튜닝 문제를 정확히 해결하기란 매우 어렵다.  Woofer 용 Horn이라면 목구멍의 크기를 드라이버의 떨판 유효 크기의 0.25 -0.5 배의 크기로 하는 것이 고조파 찌그러짐에 도움이 된다고 한다.  하지만 고역 용의 Horn에서는 목구멍의 크기를 그냥 떨판의 크기로 한다고 한다.  이번 시험용 Horn 제작과정에서는 미드레인지와 Twitter Horn만을 고려할 것이므로 일단 목구멍의 크기를 드라이버의 떨판 크기로 만들고 드라이버를 Horn에 장착할 때 적당한 두께의 스페이서를  삽입하므로서 캐비티의 부피를 조절해 주는 방식으로 소위 캐비티 튜닝을 대신해 보려 한다.  콤프레션 드라이버는 이미 캐비티가 만들어져 있으니 그냥  Horn을 장착하면 될 것이다.  참고로 AvantGrade Acoustic의 제품들에서도 콤프레션 드라이버를 사용하고 있지 않고 보통의 스피커를 사용하고 있다고 보인다.

중역의 중요성

“중역이야 말로 우리가 사는 곳이며, 중역에서의 찌그러짐이야 말로 특히 신경에 거슬리고, 중역에서의  진폭응답특성상 발생된 오류가 특히 두드러져 들린다는 사실을 음향공학자를 포함한 일반인들에게 확신시키는 일은 항상 어려운 일로 남아 있다.  나는 저역 보다는 중역에 대부분의 연구개발 역량을 집중시켜왔다.”  1971년에 Paul Klipsch가 한 말이다.

여기서 는 일단 가지고 있는 드라이버가 중역 스피커와 트위터 뿐이므로 저역용 Horn은 다루지 않는다.  그런데 중역과 트위터용 Horn은 크기가 그리 크지 않으므로 직선축의 단면이 원형인 Horn만을 고려한다.  또한Horn의 단면을 사각형으로 한다든지 Horn의 길이를 줄이기 위해 접는 등의 일은 필요하지 않다.  이것이 다른 여러 변수들을 제거하는 길이기도 하다.  그래서 원하는 Horn의 주파수 특성 등등으로부터 아가리의 크기, 목구멍의 크기를 정하고 Horn 나팔의 모양을 Tractrix로 선택한 후 이로부터 Horn의 길이를 계산하는 방식으로 설계가 진행된다.

Horn제작 (1)

Horn의 제작은 모눈 종이에 나팔 모양을 그리는 것부터 시작한다.

나팔의 모양을 Tractrix로 하는 경우 Horn의 나팔 모양은는 다음의 공식으로 정의된다: 

X = Rm * ln[(Rm + sqrt(Rm*Rm –Y*Y))/Y] – sqrt(Rt*Rt – Y* Y)

여기서 Ln( )은 자연대수이고 Rm은 Horn아가리의 반경, Y는 아가리로부터 거리가 X인 지점에서 Horn의 반경이다  이 공식을 Y에 대해 풀어야 아가리로부터 X 만큼 떨어진 지점의 반경 Y가 쉽게 계산이 되겠지만 이 공식은 간단히 풀어지지 않는다.  따라서 컴퓨터로 수치계산을 할 수 밖에 없다.

즉 먼저 주어진 X값에 대한Y 값을 계산하려면 Rm 보다는 작고 Rt보다는 큰 임의의 Y 값을 대입하여 X를 계산하고 계산된X값이 원하는 값의 오차범위 안에 접근할 때 까지 Trial & error 방식으로 반복하여 계산할 수 있겠다.  그러나 이런 번거로운 과정은 필요하지 않다.

결국 우리가 필요한 것은 나팔 모양이므로 주어진 X 값에 맞는 Y 값을 계산하는 대신  Rt < Y <Rm가 되는 여러 가능한 Y 값, 즉 목구멍의 반경, Rt보다는 크고 아가리의 반경 Rm보다는 작은 임의의 가능한 Y 에 대한 X 값을 계산하는게 쉽다. 

먼저 주어진 horn의 최저 통과 주파수, 즉 저역 카트오프 주파수로부터 아거리 반경 Rm을 계산한다:  즉   Rm = C / (2 * Pi * Fcl)

다음 Y=Rt로 놓고 X 값을 계산하면 Horn의 전체 길이 Lh가 나온다.

즉, Lh = Rm * ln[(Rm + sqrt(Rm*Rm –Rt*Rt))/Rt] – sqrt(Rm*Rm – Rt * Rt)

이제는 Y = Rt + k*d   k=1,2,…  Y <= Lh 의 조건을 만족하는 모든 Y에 대한 X 값을 계산한다.  여기서 d는 적당한 간격이다.  가령 Lh의 길이 안에 100개의 데이터 값이 필요하면 d = Lh/100으로 한다.

이렇게 구한 (X, Y) 값으로 좌표에 점을 찍어 연결하면 나팔 모양을 구할 수 있다.  a 값을 작게 잡아서 점을 더 많이 찍으면 점들을 직선으로 연결해도 좋을 정도가 될 것이다.

이 계산은 핸드폰에 있는 계산기로 계산하기에는 너무 번거롭다.  컴퓨터를 가지고 Exel 프로그램을 사용하면 쉽게 계산할 수 있다.  이 경우 Data point는 원하는 만큼 많이 만들 수는 있지만 이Data point를 모눈 종이에 찍어 넣는 일은 너무 번거로울 것이다.  이 것도 컴퓨터 프로그램을 사용할 수 있으면 좋을 것이다.  나는 여기에 InkScape 프로그램을 사용하였다.  이 프로그램은 인터넷에서 공짜로 다운로드 받을 수 있다.

설계 사례

내가 가지고 있는 드라이버 유닛은 고역이 Audax의12X9D, 25mm 돔 트위터, 중역은 ITT 의 LPKM/120//50, 60mm 돔 미드레인지 유닛이다.  이 유닛들은 과거 덴마크 스피커 제조업체인 B&O가 그들의 스피커 제품에 사용하였었다.  이 유닛들의 주파수 특성은 인터넷 상에서 구할 수 있다. 

이들을 참고로 미드레인지 유닛으로는 대략 500Hz-4KHz (3 Octave),  트위터 유닛으로는 4KHz-20KHz (~3 Octave)를 담당하도록 한다.    미드렌인지 유닛으로는 아마도 최저주파수를 600Hz 혹은 그 이상으로 잡는게 더 옳은 선택일지 모르겠다.  이 경우 저역 우퍼눈30Hz-500Hz를 카버해야 한다.  참고로 내가 가지고 있는 Tannoy의 HPD385 스피커는 크로스오버 주피수가 1Kz 이다.  나로서는 사람의 음성주파수 범위가 대략 300Hz-8KHz범위라니 할 수만 있다면 크로스오버 주파수를 이 대역폭을 피하는게 좋겠다는 생각이지만 그게 어렵다면 300Hz-4KHz대역이라도 피하겠다는 생각이다.

일단Horn의 목구멍 크기는앞서 언급한 대로 트위터와 미드레인지 모두  떨판의 크기와 같도록 한다. 따라서 트위터 Horn의 목구멍은 직경이1.25inch (즉 Rt = 0.625 inch), 미드레인지Horn의 목구멍은 직경이 2.5 inch(즉 Rt = 1.25inch)로 하여 떨판의 크기 보다는 약간 크게하였다.  이는 이들 드라이버 유닛을 Horn에 장착하기 위한 편의상 필요하다.

미드레인지 Horn은 음파의 속도C= 34290cm/s (1125 ft/se)c이니  500Hz음파 파장의 길이는 1125/500 =2.25 ft =27 inch 이다.  그러면 미드레인지 Horn 아가리는 반경이 Rm = 27/6.28 =4.4 inch가 된다.  직경이 8.8inch의 원이된다. 그리 크지 않다.

그런데 Horn을 통과하는 최저 주파수는 실제 제작하여 측정해 보면 계산치 보다는 훨 씬 높다는 것이다.  그렇다면 필자의 경우 미드레인지 Horn의 최저 주파수를 500Hz로 잡고 계산대로 아가리의 크기를 직경8.8인치로 한다면 통과 주파수가 상당히 올라가게 될 것이다.  최저 카트오프 주파수를 300Hz 로 낮추어 잡으면 Horn의 직경이 8.8 X5/3 = 14.67Inch가 되어 크기에 관한 한 큰 문제가 없다.  그렇더라도 Horn을 만든다느게 대단히 번거롭다는 점을 감안하고 후일을 도모해 최저 카트오프 주파수를 200Hz로 더 낮추어서 설계하였다.  대신 크로스오버 넷트웍의 커트오프 주파수를 500Hz로 시도해 보려 한다.  결과적으로 미드레인지 Horn은  목구멍 반경 55 mm,  아가리 반경 275 mm, 그리고 길이 355 mm 가 되었다.  이 경우 아가리의 직경이 거의 550mm가 되어 제법 크지만 견딜만 하다고 생각한다.

한편 트위터 Horn의 아가리 크기는 먼저 4 KHz 음파 파장의 길이 1125X12/4000=3.375inch 가 되어 이 경우에는 아가리 직경이  트위터 떨판의 크기보다도 작게된다.   트위터 Horn의 카트오프 주파수를 대폭 낮게 잡아 2000Hz로 잡아보면 아가리의 반경은 3.375 X2 /6.28 =1.075 inch,  직경은 2.15inch, Horn의 길이가 0.251inch로 상당히 작다.  Horn의 길이를 ¾(0.75) 인치로 하면 3/4인치 두께의 MDF보드를 오려내어 만들 수 있겠다는 생각이 들어 계산해 보니 카트오프 주파수를 대략 1500 Hz로 낮추어 주면 Horn의 길이가 0.75인치가 되었다.  이 트위터Horn을 실제 제작하여 실험을 해 보니 전혀 아무런 효과가 없다.  아마도 Horn의 길이가 너무 짧아 트위터 떨판에 별 로딩이 걸리지 않는 모양이다.

이를 확인하기 위해 두꺼운 종이로 대략 4.5인치 길이의 Conical Horn을 만들어 실험을 해 보니 과연 대략 3 dB – 6dB정도의 게인을 관찰할 수 있었다.  따라서 트위터 Horn은 아가리 크기 반경 60mm, 목구멍 크기 반경 12mm, Horn의 길이 62mm로 만들어 볼까 한다. (제작과정은 2편에 계속됩니다)